

Communication that “clicks”

Imagine a tall glass of ice water, shimmering clear in a tall glass, ice clinking against the sides, cold to the touch, refreshing as you swallow. Although you didn't just actually take a drink, the circuits in your brain that are used to see the glass, hear the ice clink, feel the cold surface, lift the glass, and swallow the water were activated as you imagined the experience.

People sit next to each other in a movie theater. As they watch the movie and experience the environment, their brain circuits fire in similar patterns. If someone in a room says the word “dog”, everyone's brain circuits dedicated to the knowledge of dogs activate – even though there is no dog in the room.

We know that speaking and listening is a mutual activity. Research in Interpersonal Neurobiology has been demonstrating these connections for a decade. But what do we know about more everyday conversations, ones that we might have in a meeting, the break room, or at the dinner table?

Princeton University researchers asked that question and designed a method to discover what happens in our brains during normal conversation. The process involved having a speaker tell an unrehearsed personal story, speaking as if to a friend or colleague. While they told the story, the researchers used a functional MRI (fMRI) to map the speaker's brain circuits. Then they had multiple persons listen to the recorded story while inside an fMRI. In addition to the brain scans, the listeners were assessed for comprehension.

Photos of the scans showed that as listeners heard the story, their brains began to mirror or “couple” with the brain of the speaker. For some listeners, there was a slight delay in mirroring the speaker's brain. But as the level of comprehension increased, the level of mirroring increased – eliminating the delay. In the highest level of assessed comprehension, the listener's brain mirroring actually preceded the speaker's.

The experiment was repeated using the same story, but told in Russian to English speakers. The resulting brain scans showed no significant coupling or mirroring in any brain region between speaker and listener. Mirroring is a result of understanding each other. It is the physical and neural basis of mutual communication. Our brains synchronize when we're communicating most effectively. We “click.”

While each person's brain is unique, the act of communication can align speaker and listener brain circuits. We know when we are “clicking” with a person or an audience. And we know

when things are falling flat. How can we increase the chances that the highest levels of coupling and mirroring will occur?

Here are three tips to get you started: Be the communicator you want to hear: organized, friendly, inspiring, light-hearted. Use language that connects with others by identifying their language and communication patterns: frame your sentences using words and phrases that you hear others use such as: feel, think, opinion, idea, actions, or bottom-line. Create a memorable experience: insure a comfortable space, offer a short “most important to remember” list of what you’ll be talking about, use pauses to give the listener time to reflect, tell stories that create an emotional response, ask questions to engage the listener.

Anyone can increase their ability to “click” with practice. Organization leaders can use these tips to increase the probabilities of coupling – of clicking and being in sync with their listeners. When listeners are able to predict what the speaker will say next, the greatest level of brain coupling and comprehension occurs. Does your communication “click”?

Learn more from the articles and links listed here:

Hasson, U. (2010) I can make your brain look like mine. *Harvard Business Review*. Retrieved on Nov. 22, 2010 from <http://hbr.org/2010/12/defend-your-research-i-can-make-your-brain-look-like-mine/ar/1>

Pauley, J.A. and Pauley, J. F. (2009). *Communication: The Key to Effective Leadership*. The Process Communication Model® is designed to promote understanding, recognition, prediction, and action from <http://gotprocess.com>

Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker-listener neural coupling underlies successful communication. *PNAS*, August 10, 2010, 32: 14425-14430.

Copyright 2011. Kathleen Friesen. All rights reserved.

Kathleen can be reached at kkfriesen@friesengroup.net.

First published in the *Kansas EMS Chronicle*.